Temporal modulation of scotopic visual signals by A17 amacrine cells in mammalian retina in vivo.

نویسندگان

  • Cun-Jian Dong
  • William A Hare
چکیده

We examined function of the feedback pathway from A17 GABAergic amacrine cells to rod bipolar cells (A17 feedback), a critically located inhibitory circuit in the classic rod pathway of the mammalian retina whose role in processing of scotopic visual information is still poorly understood. We show evidence that this A17 feedback has a profound influence on the temporal properties of rod-driven postphotoreceptoral responses (assessed with the scotopic electroretinogram b-wave). Application of a GABA(c) antagonist prolonged preferentially the decay of the scotopic b-wave. The degree of prolongation increased as the light intensity decreased. Application of selective GABA(a) antagonists accelerated the kinetics of the scotopic b-wave. This effect was abolished when the GABA(c) antagonist was coapplied. Selective ablation of A17 cells mimicked the action of the GABA(c) antagonist. In A17 cell-ablated retinas, the GABA(c) antagonist was no longer very effective to slow the decay of the scotopic b-wave. Thus the A17 feedback, activated by light stimulation and mediated mainly by the GABA(c) receptors, makes the scotopic b-wave more transient by accelerating preferentially its decay. The strength of the feedback can be modulated by GABA(a) receptor-mediated inhibition and by light intensity. Our results also suggest that in the mammalian retina the feedback may be a novel mechanism that contributes postphotoreceptorally to the termination of rod signals, especially those elicited by very dim light stimuli.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acetylcholine induces GABA release onto rod bipolar cells through heteromeric nicotinic receptors expressed in A17 amacrine cells

Acetylcholine (ACh) is a major retinal neurotransmitter that modulates visual processing through a large repertoire of cholinergic receptors expressed on different retinal cell types. ACh is released from starburst amacrine cells (SACs) under scotopic conditions, but its effects on cells of the rod pathway have not been investigated. Using whole-cell patch clamp recordings in slices of rat reti...

متن کامل

Disruption of a neural microcircuit in the rod pathway of the mammalian retina by diabetes mellitus.

Diabetes leads to dysfunction of the neural retina before and independent of classical microvascular diabetic retinopathy, but previous studies have failed to demonstrate which neurons and circuits are affected at the earliest stages. Here, using patch-clamp recording and two-photon Ca(2+) imaging in rat retinal slices, we investigated diabetes-evoked changes in a microcircuit consisting of rod...

متن کامل

BK channels mediate pathway-specific modulation of visual signals in the in vivo mouse retina.

The modulatory role of large-conductance Ca(2+)-activated K(+) (BK) channels in the nervous system has been extensively studied. In the retina, it has been shown that BK channels play a pivotal role in modulating feedback from A17 amacrine cells to rod bipolar cells (RBCs). Here, we used electroretinography to examine the functional role of BK channels for rod and cone vision in the retina in v...

متن کامل

AII amacrine cells limit scotopic acuity in central macaque retina: A confocal analysis of calretinin labeling.

We have used calretinin antibodies to label selectively the mosaic of AII amacrine cells in the macaque retina. Confocal analysis of double-labeled material indicated that AII dendrites spiral down around descending rod bipolar axons before enveloping the synaptic terminals. Processes from a previously observed dopaminergic plexus in the inner nuclear layer were observed to contact the somata o...

متن کامل

Function and plasticity of homologous coupling between AII amacrine cells

The AII amacrine cells are critical elements in the primary rod pathway of the mammalian retina, acting as an obligatory conduit of rod signals to both on- and off-center ganglion cells. In addition to the chemical synaptic circuitry they subserve, AII cells form two types of electrical synapses corresponding to gap junctions formed between neighboring AII cells as well as junctions formed betw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 89 4  شماره 

صفحات  -

تاریخ انتشار 2003